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A Modeling Study of the Mesocyclone

1. INTRODUCTION

A well-known characteristic of supercell-type storms is a deep, wide region (> 3 kin) of persistent ( >_5 minutes)
rotation (shear > 0.005/s) known as the mesocyclone. Storms exhibiting this degree of organized rotation are extremely
dangerous. Almost all produce severe weather of one kind or another. It is fortuitous that the mesocyclone produces a
distinct signature in the single-Doppler velocity field that is not only easy to recognize by eye, but is generally
straightforward to detect through automated means. The single-Doppler mesocyclone signature is now considered to be
a most valuable warning criterion for severe weather.

Doppler radar only senses the component of motion that is directed along the radar beam. This limited perspective
means that a rotating mass, larger in width than the radar beam, will be sensed directly only along a cross section. With
only one dimension of the rotating feature well resolved, the total shape and velocity distribution of the rotating area is
not easily obtained. For convenience, and for lack of a better model, the mesocyclone is generally assumed to be
circular, with the flow varying according to a Rankine-combined vortex (RCV) as first proposed by Lhermitte (1964),
herein referred to as the circular mesocyclone model

The assumption of circular flow is a reasonable first-order approximation, and is supported by numerous
observations. Circularity is, in fact, a cornerstone of existing detection and evaluation techniques. Donaldson (1970)
proposed criteria2 for positive single-Doppler identification of a mesocyclone based on a circularity assumption. These
criteria, having proven effective during operations, were built in one form or another into automated mesocyclone
detection algorithms (for example, Wieler, and Zrnic' et al.,4 ). Circularity is assumed in automated techniques for hail

prediction (for example, Witt and Nelson,5) and tornado prediction (Desrochers and Donaldson, 6). The success of severe
weather evaluators that use mesocyclone related parameters depends largely on the validity of the model used to extract
the mesocyclone information.

Mesocyclones are not necessarily circular. There is evidence to support this in multiple-Doppler studies (for
example, Brandes, 7), where the mesocyclone sometimes appears elongated. Mesocyclone signatures from
single-Doppler observations often differ in detail from the ideal proposed by the circular model. Some of these
irregularities can be explained by embedded vortices within a general mesocyclone flow, as modeled nicely by Brown
and Wood 8 . Other irregularities are more difficult to explain, except to say they must be associated with a distorted or
non-uniform flow field. The results of such distortions is the topic of this investigation.
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As a starting point, it is useful to examine the circular-model kinematics to see how well they agree with the
three-dimensional (3-D) flow field of a supercell-type updraft. From there, alternative models of the mesocyclone will
be examined. Specifically, we will examine an elliptical flow field to show how it can better explain some of the
irregularities observed in the single-Doppler flow.

2. THE CLASSICAL MESOCYCLONE MODEL

The velocity distribution of the circular mesocyclone model is shown in Figure la. This model consists of two flow
regimes: an inner or "core" region, and an outer or "potential flow". Flow within the core varies linearly with distance
from the mesocyclone center and is described by

v/r =C, (I)

where (v) is the velocity at any radius (r) inside the core, and Ci = V / R, a constant related by the peak velocity (V)
found at the mesocyclone core radius (R) that separates the solid body and potential flows. Conversely, flow within the
potential flow region is given by

v r = C2= V R. (2)

When radar resolution permits, (as it generally does for flows the size of mesocyclones) the mesocyclone is seen as
a velocity couplet, with the flow defined well at only the two points where the radar-relative incoming and outgoing
velocities are greatest. An example of a couplet for pure rotation is shown in Figure lb, where the radar viewpoint is
from the bottom of the page. For rotation, the model describes a flow that rotates as a solid body inside the core region.
Pure rotation may exist at one or more levels between 2 and 7 km AGL.

At most elevations there is a component of divergence associated with the mesocyclonic flow. This results in a
clockwise rotation of the couplet in Figure lb for convergence and counterclockwise for divergence. The orientation
angle of the velocity peaks ý, relative to the radar beam, is 00 for pure rotation, -90° for pure convergence, and 90° for
pure divergence. At the mesocyclone core radius, components of velocity associated with rotation (Vr) and divergence
(Vd) are given by Vo cos (0) and Vo sin(0), respectively, where Vo is the average of the radar observed velocity couplet
velocity maxima. Figure 2 shows a mesocyclone with 0= -45*, where the component of velocity due to inflow is equal
to the component associated with rotation.

Pure convergence may exist at low levels of a storm, but generally not as part of a circular, mesocyclonic flow. At
the storm top, however, signatures of pure divergence in an apparently circular flow are common.

Vorticity and divergence fields are simple and straightforward to evaluate for a circular mesocyclone flow. The
circular model equations describe a flow field in which magnitudes of velocity are a function only of range from the
vortex center and not a function of direction. Consider first a purely rotational flow where the velocity varies according
to Eqs.(1) and (2) and the total component of velocity is normal to the mesocyclone radius arm. With the mesocyclone
examined in a Cartesian coordinate system defined by directions x and y, and velocity components ux and uy, then, in
the mesocyclone core, uy/cIx is positive at any given point for cyclonic rotation, and equal in magnitude but opposite in
sign to aux/ay. Therefore, within the core region,

Vorticity (VxV) = 2 auy/ax = 2 Vo cos(*)/R = 2 Vr/R. (3)

Vorticity is constant within the core region and equal to twice the peak mesocyclone rotational velocity divided by the
core radius.

2
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Figure 1. Velocity Distribution for a Circular, Axisymmetric, Rankine-Combined Vortex (RCV) Mesocyclone Flow.
a) Velocity magnitude as a function of distance from the mesocyclone center. The mesocyclone radius, called
the core radius (R), corresponds to the locations of peak velocity directed towards (-) and away from (+) the
radar (±V). b) Theoretical mesocyclone appearance for a purely rotational flow as seen by single Doppler ra-
dar, for a radar located in the direction towards the bottom of the page. Contour levels are as indicated except
that radial velocities within 7.5 percent of maximum or minimum are indicated by the solid black contour.
The circle drawn indicates the mesocyclone ring of maximum velocity that defines the core. Pure rotation is
indicated by inbound and outbound velocity peaks that are at the same range from the radar. This is defined
by a velocity peaks' orientation angle (ý) of 00.
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Figure 2. Theoretical Appearance, as Seen by Single-Doppler Radar, of a Circular Mosocyclone Containing Equal
Magnitudes of Vorticity and Convergence. Contour levels are as indicated in Figure 1. The relative magni-
tudes of vorticity to convergence or divergence is indicated by the velocity peaks' orientation angle (*) meas-
ured relative to the azimuthal direction. Here, * equals -45*.
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In the region of potential flow for rotation, Ux and u, vary with distance from the vortex center according to Eq. (2).
The rotational velocity decreases with increasing distance from the mesocyclone center and cuy/ax = oux/4. The
derivatives are equal in both sign and magnitude at any point, the rate of change of each decreases with increasing
distance, and the vector product for vorticity is everywhere equal to zero in the potential flow area.

It seems unlikely that vorticity should actually change abruptly from zero to a constant across the ring of maximum
mesocyclone velocity. Regardless of the validity of assuming solid body rotation in the core, it is reasonable to assume
that a transition zone of increasing cyclonic vorticity exists in the so-called "potential flow region". If the rate of change
of rotational velocity in the potential flow region is decreased from that prescribed by the circular model potential flow
Eq. (2), such a transition is provided (not shown),

The divergence field associated with inflow or outflow is analogous to the vorticity field of the circular model for
rotation, that is, aux/Sdx = auy/y. Therefore, divergence within the core is given by

Divergence (V. ) = 2 auX/ax = 2 Vo sin(ý)/R = 2 Vd/R. (4)

The vorticity and divergence field for the circular mesocyclone example of Figure 2 is shown in Figure 3. Recall
that in Figure 2, where * = -45*, the magnitudes of vorticity and convergence inside the core are equal. The circular
model is characterized by uniform vorticity and divergence (convergence in this case) associated the with core region.
In the region described by potential flow, vorticity and divergence are both zero.

In summary, the circular mesocyclone model is characterized by uniform vorticity and divergence in the core
region. The relative magnitudes of these quantities are determined by the orientation of the velocity peaks with respect
to the radar (0). From an observer's point of view, uniform divergence or vorticity in a single-Doppler velocity field is
indicated by straight isodops (velocity contours), as seen in the core region of Figures lb and 2. This is sometimes, but
not always, a good approximation of what is seen in nature. Also, from Figures lb and 2, it is obvious that the zero line
(indicated by the non-shaded region) is always perpendicular to a line connecting the velocity peaks in the core. There is
generally some deviation from this in single-Doppler observations. In the "potential flow" region, the circular model is
perhaps less accurate than for the core. The impact of this for evaluating mesocyclone intensity is minimal because
those evaluations concern only the core, where the concentration of energy is greatest.

3. NON-CIRCULAR ROTATION AND NON-SYMMETRICAL FLOWS

It has been recognized that mesocyclones do not always assume a circular, RCV-like flow pattern. Wood (1991),
for example, examined the envelope of azimuthal gradients in the single-Doppler field and compared it to the envelope
predicted by a circular flow9 . His work documents several single-Doppler cases where the mesocyclone flow appears to
deviate considerably from the circular mesocyclone model. The observed deviation is sometimes due to embedded
vortices that confuse the issue. At other times the vortex appears singular but distorted in shape.

In the multiple-Doppler study by Brandes 7 of the 1977 Del City, Oklahoma, mesocyclone, where the total
horizontal wind field is more completely determined, the mesocyclone, as defined by a vorticity magnitude, is
elongated. An example from this work will be discussed in Section 4.

Deviations from the circular mesocyclone model are sometimes obvious in even single-Doppler data. Distorted
flows are seen most often at low levels but can extend to middle storm levels as well. It is not clear at this time what
distortions exist at the upper reaches of a storm. The high elevation angles required for sampling these regions result in
degraded horizontal resolution of the data and a stronger contribution by the vertical velocities to the radial component.
Examples of highly distorted low level flows from the Del City mesocyclone are shown in Figures 4 and 5. The times
selected are for volume scans beginning at 1826 and 1832. At 1840 the storm's first tornado occurred, classified as F2
on the Fujita scalel°.
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Circular, RCV vorticity field
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Circular, RCV divergence field
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Figure 3. The Associated Vorticity and Divergence (convergence) Fields for a Circular RCV Flow Associated with the
Example in Figure 2.
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The scaling presented in Figures 4 and 5 is nearly equal in the azimuthal and radial dunensions. Because of the
range-azimuth displays, there is some distortion to the data. However, the mesocyclone is sufficiently far from the radar
that the distortion attributable to the display is small compared to the natural distortion in the mesocyclone flow. There
are several distinctive qualities to the examples. First, variations in the contouring are somewhat suggestive of the
circular mesocyclone model; that is, there appear to be inner and outer flow regimes. Second, in contrast to the circular
model, the line connecting the velocity peaks in the Del City example is not always perpendicular to the zero line (see
Figures 4b and 5b for example). Finally, the envelope in the isodops separating the inner and outer flow regions appears
to be approximately elliptical in shape. Figure 5b illustrates this elliptical shape.

A principal problem to solve in modeling the elliptical flow is the determination of reasonable kinematics
constraints. As a starting point, the mesocyclone is examined from a two-dimensional (2-D) perspective, although it is in
reality, a three-dimensional feature. Therefore, constraints can only be applied to the rotational aspect of the flow. For
simplicity, the model is developed where vorticity is uniform inside the core. The affect of applying fields of uniform
divergence is then examined. The process used for combining the features is simple; separate fields for rotation and
inflow are generated; and then they are vectorially combined to generate the total two-dimensional flow field. This
simple approach allows easy examination of important aspects of the model.

3.1 Rotation in an Elliptical Flow

The orientation of the Del City "ellipse" with respect to the radar is relatively unchanged with time (Figures 4 and
5). This means that we are not observing an elliptical pattern rotating about an axis, but rather an elliptical flow. Also,
the changing position in space of the velocity peaks suggests an evolving vorticity and divergence field. It will be shown
here that the general characteristics of the single-Doppler velocity field can be simulated with a simple two-dimensional
(2-D) mesocyclone model.

Mesocyclone rotation is modeled by an ellipse with vertices (:la), covertices (±b), (as shown in Figure 6a), and
thickness. Cross-sectional areas along a and b through which the flow travels are given by A& = a Ah and Ab = b Ah.
Constant mass flux is assumed for the rotational flow such that

p A. Va = p Ab Vb, (5)

where Va and Vb are the average velocities through the cross sectional areas, and p is air density, held constant
throughout the horizontal flow. For a rotational flow to satisfy Eq. (5), air traveling across the ellipse major axis (a) must
experience an increase in angular speed (e)) to pass through the minor axis (b), so the angular speed at a is not the same
as b; Woa * Of. If o) is held constant along any given radius arm of the ellipse, akin to the inner flow of the circular
mesocyclone model, then (V = ow an2) and (Vb = oMb b/2). Therefore,

p a2 Ai Oa/ 2 = p b2 Ah (%/2 . (6)

The peak rotational velocities along a and b are given by Va and Vb. Therefore,
Wa = Va/a, Oab = Vb/b , and

a Va = b Vb. (7)

In a purely rotational flow, the wind is tangent to the ellipse surface, and the magnitude of the rotational velocity is
just the component of the velocity that is normal to the ellipse radial arm. Along axes a and b the flow tangent to the
ellipse is also normal to the radius arm, but for all radii in between, the rotational velocity is given by the velocity along
the ellipse surface multiplied by sin(a), where a is the obtuse angle between the radius arm of the ellipse and the
tangent to the ellipse (Figure 6b). The angle a is given by (900 + - [). • is the ellipse relative angle that varies

9



a)c

Figure 6. Elliptical Mesocyclone Model Setup. a) Horizontal view with major and minor ellipse radii given by a and b,
respectively. b) Model reference angles, where a = 96w' +
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between 0* and 900 with 0* towards the ellipse "top" along the minor axis. 0 is the arctangent of the slope along the

ellipse.

With an ellipse defined by (x2/a2 + y2/b2 = 1), the slope along the curve is given by

dy -bx (8)
d& a2 (I _- x2a)oS

If the coordinate system is defined with • measured positively in a clockwise sense and 0 =00 along the minor
axis (b), then (x = R{1) sin(t)),, where R{1) is the ellipse radius as a function of . The parameter R{(} is given by

Ro= a2 2 05 
(9)

R{}-- b2sin2(4) + a2 co)s2(4)I

and the slope, dy/dx, can be represented as a function of 4:

_q _ -býtan(k) (10)
dx a2

Therefore,

a = 90P + 4 - tan-' (d-- (11)

To maintain a constant mass flux within the ellipse,

R{'} V{f} sin(a) = R{f} Vr 4}- = Cmf (12)

where V{4) is the velocity along the ellipse perimeter at R{1} as a function of, 4, Vr{i) is the rotational velocity, and
Cmfis the mass flux constant defined by(Cmif = bVb = aVa). Equation (12) describes the variation in radius and velocity
along the ring of maximum velocity that separates the inner and outer flow regions. Within the core region, the rota-
tional velocity varies by

vr / r = V{1) sin(a) / R{1) = Vr{J) / R{4} = C1{1}. (13)

In the potential flow region, the rotationa: velocity varies by

Vr r = V{4) sin(a) R14} = Vr{i} R{1} = C2{1}. (14)

These relationships are analogous to Eqs. (1) and (2) for the circular mesocyclone.

Examples of the elliptical mesocyclone model for purely cyclonic rotation, where the total velocity is directed
along the ellipse, are given in Figure 7. Simulated is the velocity distribution that would be detected by single Doppler
radar, with the radar located towards the bottom of the page. These examples are for an arbitrary eccentricity of 0.866,
which corresponds to a stretch factor (S) of 2. Stretch factor is defined as the ratio of the ellipse major and minor axes
(a/b). This means that that S = 1 for a circle and S > 1 for an ellipse.

11
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Figure 7. Examples of The Elliptical Mesocyclone Model for the Condition of Pure Rotation (that is divergence is
everywhere equal to zero). The velocity distribution that would be detected by a single Doppler radar, located
towards the bottom of the page, is shown. Contour levels are as indicated in Figure 1. Whitz circles indicate
the precise location of velocity maxima. Example shown is for an ellipse of axial stretch factor (S) = 2. El-
lipse size, shape, and orientation relative to the radar are indicated by the thick solid line. The straight line bi-
secting the ellipse is oriented along the major axis. The examples, a,b,c, and d are for the same feature
observed at a feature orientation angle (Of) of 90, 60, 306, and 0, respectively.
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The examples shown in the figure represent the same theoretical elliptical mesocyclone at various orientations to
the radar. The feature orientation angle (Of) refers to the orientation of the ellipse relative to the radar. Of equal to 00
means the minor axis is aligned with the radar beam, as in Figure 7d. Positive (negative) values of Of indicate
counterclockwise (clockwise) rotation of a feature.

The figure indicates that for a pure rotation scenario, the velocity peaks are always in a line normal to the radar
beam (# = 00), regardless of Of. However, the magnitude of the detected velocity peaks and the distance between them
varies greatly as a function of the ellipse orientation Of. Figure 8 shows the effect on the apparent mesocyclone shear of
Of and stretch factor S. Here the observed shear is normalized to the peak value, which corresponds to Of = 90 .

The potential impact of ellipse orientation to the radar increases with the stretch factor. With even a modest stretch
factor of 1.25, the detected shear by single-Doppler radar will be only 64 percent of the true peak value when the radar
is looking broadside at the ellipse ( Of = 00). For the examples of Figure 7, with S = 2, the detected shear may be only 25
percent of the peak. This has important implications for mesocyclone detection. The established criteria for
mesocyclone identification by single-Doppler radar require the detection of "mesocyclonic shear" at several contiguous
elevations1 I (JDOP Staff, 1979). In practice, mesocyclonic shear is defined as 0.005/s or greater across the relative
inbound and outbound velocity peaks associated with the observed velocity couplet Therefore, with the present
mesocyclone detection criteria, the early detection of all mesocyclones and the detection of marginal mesocyclones with
peak shear near 0.005/s depends on the feature orientation relative to the radar. If mesocyclone elongation and
orientation are a function of the low level inflow, there will be preferential regions for mesocyclone detection within the
radar scanning circle. If the Del City storm is representative of Oklahoma, then the locations for optimal shear detection
should be NNW and SSE of the radar.

Figure 5b of the Del City examples is represented fairly well by the model. The Del City example has a stretch
factor (S) of about 1.9 and a feature orientation angle (Of) of approximately 55*. A single-Doppler model simulation
with these characteristics is displayed in Figure 9 along with the Del City observation. There is good general agreement
between the two. Orientation of the velocity peaks with respect to the radar is very similar, and the "zero line", indicated
by the white contour interval (non-shaded), has about the same orientation with respect to the peaks, although with Del
City the contours between the velocity peaks are not entirely as straight as in the model. In both, it is easy to determine
the ellipse outline through the contour inflections at the border between the inner core flow and the potential flow
region.

The Del City example is at a height of 1.1 kmi, which is generally low for pure rotation in a mesocyclone. However,
this height is at the lower bounds of where Brandes 7 found non-divergent flows to exist for this particular mesocyclone.

3.2 Kinematics of the Model Rotatioml Flow

Vorticity and divergence fields of the model are determined for pure rotational flow. The parameters are determined
using a simple point differencing formulation from a Cartesian grid. For pure rotation, divergence is, by definition,
equal to zero in both the inner and outer flow regions of the ellipse. The vorticity field is more interesting and is shown
in Figure 10. As with the circular flow, vorticity is uniform within the ellipse core region and is equal to the average of
the radial shear along the major and minor axes.

The figure shows examples where the inner vorticity is held constant while the stretch factor (S) is varied between
3.0, 2.0, 1.5, and 1.0. In the outer region, the elliptical flow produces a pair of anticyclonic vorticity peaks located either
side of the ellipse minor axis. The magnitude of this negative vorticity relative to the positive vorticity of the core region
varies as a function of the eccentricity: the greater the stretch factor, the greater the relative anticyclonic component.

While the couplet of anticyclonic vorticity is a by-product of the model, does it have some validity in real world?
The examples in Figure 7 are for a rotational wind field that varies according to a general potential flow in the
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Observed shear as function of ellipse orientation

1.0

1.5

.0

0.0
0 30 60 90
0 -30 -60 -90

ellipse orientation (degrees)

Figure 8. Detectable Shear, by Single-Doppler Radar, as a Function of the Mesocyclone (ellipse) Orientation with Re-
spect to the Radar. The effect of stretch factor is examined with S varying from 1.0 (circular flow) to 3.0.
Peak shear is detected when Of= 90° for pure rotation (no divergence). Other shears within each category of
S are normalized to this value.
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Figure 10. Presentations of the Vorticity Field for an Elliptical Mesocyclone Flow as a Function of the Stretch Factor.
Peak velocities vary for each example to maintain the same vorticity magnitude in the core, 0.025/s. The
feature is presented at a orientation angle of Of = 45*, to show the vorticity contours as clearly as possible,
but the vorticity field is, of course, not a function of the feature orientation to the radar. The example show
how the peak in anticyclonic vorticity outside the core varies as a function of stretch factor; a) S = 3.0, b)
S=2.0,c)S= 1.5,d)S= 1.0.
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mesocyclone outer flow region, as described in Eq. (14). While true potential flow is unlikely, it is interesting to
examine how the flow in the outer region might be varied to eliminate the anticyclonic couplet entirely. Figure 11 shows
how the velocity field, seen by single-Doppler radar, would have to vary to have no associated anticyclonic vorticity
couplet. Such elongation of the velocity contours in the outer flow region is not seen in single-Doppler mesocyclone
observations, and, therefore, the presence of negative vorticity pairs in a general elliptical mesocyclone flow is at least
dynamically possible. This is interesting considering that some cyclonic tornadoes form in conjunction with an
anticyclonic counterpart that is generally of lesser intensity. Whether such an anticyclonic vorticity zone serves as the
source for amplification to tornado intensity is an important question, but beyond the present scope of this work.

3.3 Rotational Kinetic Energy

A convenient parameter for describing mesocyclone organization is Rotational Kinetic Energy RKE. While
mesocyclone RKE is not especially effective for evaluating tornado potential12 (Donaldson and Desrochers, 1990), it is
a conservative quantity that may be useful for evaluating other types of severe weather, and is worthy of discussion
here.

It is instructive to derive the equation for circular RKE. For circular mesocyclones it is convenient, and reasonable,
to assume solid body rotation where vorticity is uniform in the core. Rotational kinetic energy is then simply (I wo2/2),
the product of moment of inertia (1) and angular velocity (w). For a solid disk, (I = m R2/2), the product of the
mesocyclone mass (in) and radius (R) of the core. Mass is given by (p Ah xt R2). Angular speed (w) is given by V/R.
Rotational kinetic energy for a circular mesocyclone is represented by:

RKE circi =mV2 /4=pAhtR 2V 2/4 (15)

The identical solution can be obtained by integrating the kinetic energy of a sector around the entire mesocyclone
circle. It is necessary to take this approach for an elliptical mesocyclone because the flow cannot be described as solid
body, although the vorticity field inside the core may be uniform. Also, an elliptical flow does not have a moment of
inertia since the elliptical shape is not rotating around itself, but rather the flow is following a relatively steady elliptical
shape. We begin with the rotational kinetic energy of an ellipse sector, rl radians wide,

RKE s = ms (Vr @ora {(}) 2/2 (16)

where Vr @cm{(} is the rotational velocity at the sector center of mass as a function of the ellipse relative angle 4. The
mass of a sector is given by ins = p Ah As. The area of a sector is given by (As = R{1} 2 drl/2 = Rcm {1}2 di1), where dri
is the sector angular width, assumed small, and Rcm{4}is the radius to the sector center of mass. The velocity along the
ellipse at RcmJ}) is Vcm{(} and is given by(Vcm{4} = 0o{4} Rcm{1} = V{() Rcm{4} /R{(}) . Since the rotational ve-
locity is a function of ax: (Vr @cm{= ) = Vcm{(} sin(a) =V{() sin(a) Rcm{(} /R{1}). From Eq. (12), (V{(} sin(a) = aV
a / R14)), and substituting for Rcm {(}, the rotational kinetic energy for an elliptic sector is given by

RKEs = p Ah a2 (Va) 2d1/8. (17)

Integration of TI from zero to 2 n to obtain the total ellipse rotational kinetic energy yields:

RKE ni•se = pA h a 2(Va )2 t/4 = m, a (Va) 2 /4b (18)

where the ellipse mass (me) = p Ah x a b. For a circle, where a = b, Eq. (18) reduces to Eq. (15).
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ellipse. Therefore, ellipse RKE can be determined without knowledge of the eccentricity, ellipse orientation to the radar,
or the magnitude of Va or Vb. The single-Doppler velocity peaks can be applied to the relationship for a circular
mesocyclone Eq. (15) to yield the RKE of the ellipse, regardless of the eccentricity. Mesocyclone rotational kinetic
energy is therefore a conservative quantity for detection. Unfortunately, in our own investigations, RKE has not been
found to be of significant value for evaluating the mesocyclone for hail or tornado potential. 13.12

3.4 Excess Rotational Kinetic Energy

Donaldson and Desrochers 14 present the concept of Excess Rotational Kinetic Energy (ERKE), which has
subsequently been shown to offer promise for hail and especially tornado prediction (for example, Desrochers and
Donaldson, 6). From their work, ERKE for a circle is given by

ERKEcircie = p Ah x R2 (Vr - R Sin) 2 /4 (19)

where Sm is an arbitrary shear threshold that defines mesocyclone rotation, nominally 0.005/s (after Donaldson2). ERKE
is defined to exist only for (Vr - R Sm) > 0. ERKE is simply the rotational kinetic energy in excess of what would be
needed to sustain mesocyclone rotation. The idea of ERKE is to distinguish large, well-organized, and swiftly rotating
features that may present a severe weather threat from features that may have greater RKE but are benign.

ERKE for an ellipse can be determined in an analogous manner to RKEenips. The ERKE of an ellipse sector is
represented by

ERKEs = p Rt4}2 (Vj4} sin(c) - R{() Si)2 d 11/8. (20)

Here, in analogy with the circular flow, ERKE exists for (V{1) sin(a) > R{k}Sm). Since the radial shear varies accord-
ing to the ellipse relative angle (e), it is possible that radial shear satisfies Sm for only a sector of the ellipse. Substituting
Eq. (9) for R{1) into the inequality and solving for 4, the maximum ellipse relative angle for integrating Eq. (20) for
ERKE in the first quadrant of the ellipse is

Sa= cos(b2 [(a2Sm/bVb) -1]1) (21)

Expansion and integration of Eq. (20) for each ellipse quadrant yields the ERKE for an ellipse:

4= Eon (22)

ERKFelnipe=2 f (a2Va2-2aVaSmR{j} 2 +R{j} 4 Sm2)d4.

Figure 12 shows Eq. (22) evaluated using Simpson's rule and normalized by the corresponding value of RKE.
Here, the stretch factor (S) is varied between 1.0 and 3.0, and the shear threshold Sm is varied between 0.001/s and
0.009/s. RKEeUipse is kept constant for the calculations and is determined for a climatological mature mesocyclone of
2.75 km radius and 23.3 m/s rotational velocity (after Burgess et al.15).

With RKEeipse kept constant as a reference, ERKE decreases as the mesocyclone becomes more elongated,
because the average shear decreases. The change with Sm is a function of the products (a Va) and (b Vb), which are
proportional to RKE. For a low shear threshold (Sm = 0.001/s), ERKE decreases by 26 percent between S=I and S=3.
At progressively higher shear thresholds, the relative reduction in ERKE increases. For example, at Sm = 0.005/s ERKE
is diminished by about 72 percent between S=I and S=3.
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Figure 12. Vaiation of ERKE as a Function of Ellipse Stretch Factor (S) and ERKE Shear Threshold (Sm). Values are
normalized by RiCE calculated for b =2750 m and Vj, = 23.3 mIIs, climatological values of an average ma-
ture mescwyclone (from Burgess et al 16).
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Another way to examine ERKE is to compare it to vorticity. Figure 13 shows ERKE variation with vorticity and
stretch factor. Here, ERKE at Sm = 0.005/s is calculated for various vorticity levels and is nonmalized to the ERKE
value at S = 3. For any given magnitude of mesocyclonic vorticity within the core region, ERKE increases as a feature
becomes more elongated. The relative change of ERKE decreases with increasing vorticity.

While the increase in ERKE with feature elongation at constant vorticity is notable, it would not be necessarly
correct to infer that ERKE would indicate a significant alteration in analysis, that is in storm strength or structure, based
solely on elongation. In fact, the variation in ERKE with elongation is small compared to the variation with vorticity.
ihe Del City example of Figure 5b is an appropriate case to make this point. The time of this particular scan was only 5
mm. before the first F2 tornado. Vorticity here is estimated at 0.02/s, and with S = 1.9, the mesocyclone was
significantly elongated. Comparing the ERKE of this feature to the ERKE of a more elongated feature at a lesser
vorticity, and to a less elongated feature at a higher vorticity gives an indication of the importance of vorticity in ERKE.
ERKE of the Del City case is roughly 17 times greater in magnitude than ERKE for a feature of one-half the vorticity
(0.011s) and S = 3. Experience indicates that such a marginal vorticity case would not be expected to produce
significant tornadoes (for example, see Desrochers and Donaldson6 ). Compare this to a mesocyclone of twice the
vorticity of the Del City mesocyclone. ERKE for a feature of S = 1, a circular case, and vorticity 0.04/s, is roughly 4
times that of Del City. This is in the range of what is observed for violent tornado producing storms. For each doubling
in vorticity magnitude there is nearly an order of magnitude increase in ERKE, which, except for very marginal
mesocyclones, is greater than the change attributable to eccentricity. This assumes that S = 3 is a safe upper bound for
eccentricity. In summary, vorticity contributes more to the variation in ERKE than eccentricity. At the marginal
mesocyclone vorticity level, eccentricity is perhaps of little significance because it can not contribute to significant
values of ERKE. At increasingly larger vorticity values, where the absolute magnitudes of ERKE are already significant,
it is speculated that increased eccentricity may add to the apparent overall severity of the mesocyclone.

"The investigation of ERKE in mesocyclones has to date assumed that the mesocyclone flow is circular (for
example, Donaldson and Desrochers1 2). Given the considerable variability in the apparent size and rotational velocity of
an elliptical mesocyclone, it is interesting to ask for what feature orientation a "circular" assumption would be accurate.
In other words, at what orientation of the ellipse, relative to the radar, will the observed velocity peaks be of such
magnitude and azimuthal separation that the Excess Rotational Kinetic Energy (ERKE) of the ellipse can be derived
under the assumption that the peaks are associated with a circular flow?

Figure 14 shows the variation of "apparent" ERKE for an elliptical flow where the vorticity of the core and the
shear threshold (Sin) are kept constant. Ellipses of various stretch factors are examined and viewed from different
orientations. The vorticity magnitude 0.007/s has been selected to be that for climatological mature mesocyclones. The
shear threshold is arbitrarily set at 0.005/s. The velocity field is one of pure rotation. ERKE is determined assuming the
radar observed velocity peaks are associated with a circular feature. These values are then normalized by the true ERKE
of the feature.

While the results correspond to a climatological feature, the generalities revealed are important ERKE estimation
errors will be minimized when a feature is oriented about ± 450 to the radar beam. For orientations at larger angles,
ERKE may be overestimated by a factor of 2 or more as the maximum velocities along the ellipse minor axes are
detected. At orientations less than 450 ERKE will be underestimated, so severely that a severe mesocyclone may appear
to have zero ERKE. The amount of over- or underestimation will increase as a feature becomes more elongated. Even
with modest eccentricity, the errors can be considerable. With a stretch factor of S = 1.2, ERKE estimation can be off by
as much as 50 percent if the eccentricity is not known.

4. DIVERGENCE SCENARIOS FOR ELLIPTICAL FLOW

The divergence field for a circular flow has been discussed in Section 2. In this section, a few possible divergence
scenarios for an elliptical flow are examined.
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Figure 13. Variation of ERKE with Feature Eccentricity and Vorticity. Values of ERKE for each given vorticity level
are normalized to the ERKE at a stretch factor of 3.0.
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Figure 14. The Ratio of Circle ERKE to the True Ellipse ERKE as a Function of Stretch Factor (S) and Feature Orien-
tation (of). The intent is to illustrate potential errors in ERKE estimation by application of the old, circular
mesocyclone model. Circle ERKE is determined from the single-Doppler mesocyclone observation, inter-
preted to be associated with a circular flow, regardless of how elliptical the true flow actually is. Vorticity is
held constant for these calculations.
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4.1 Unfornm Dhvr ce

A logical starting point is to simply reapply the mesocyclone model for divergence, such that flow is directed
normal to, instead of along, the ellipse. Namely, (R{4) V{(4 sin(t) = R14) Vd{i) = a Va), where Vd{(} is the
divergent component of the velocity. A change in the direction of flow in this manner results in a flow field that has zero
vorticity everywhere, and uniform divergence in the core region. Mesocyclone-like signatures in the Doppler field are
not observed for purely convergent signatures, but signatures indicative of a purely divergent flow are sometimes seen at
the upper reaches of a storm. A model example of the divergence field is shown in Figure 15, which is analogous to the
model vorticity field (Figure 10b). Uniform divergence exists in the mesocyclone core region and extends into the
potential flow region along the major axis. Along the minor axis, in the potential flow region, a divergence couplet of
opposite sign to that of the core region exists.

An example of the single-Doppler appearance of the velocity field associated with the divergence field of Figure
15 is shown in Figure 16 at various radar-relative ellipse orientation angles. These examples are meant to represent
upper storm outflow, as can be noted by the signs of the velocity contours. The flow is characterized by opposing
velocity peaks oriented in the radial direction, (* = 900). Straight isodops in the core region mean uniform divergence
exists there. Although the magnitudes of the peak velocities change as the ellipse is rotated with respect to the radar, the
orientation of the peaks remains the same, as was also observed for pure rotation (Figure 8). It is interesting to see in
Figure 15, that in a general divergent flow there is a convergence couplet in the potential flow region. This couplet is
located along the direction of the minor axis where the outflow velocity is maximum. This result is produced by the
assumption that the velocity magnitude strictly adheres to a potential flow rate of change, as in Eq. (14), which may not
be realistic.

4.2 Unfform Convergence and Rotation

At most elevations through a mesocyclone, the flow field is comprised of a combination of divergence and
vorticity. Here we examine low level inflow. Figure 17 presents single-Doppler views when the magnitude of
convergence in the core region is equal to that of vorticity. This is shown for an arbitrary stretch factor (S) of 2.

The white dots in the figure indicate the location of the maximum radar-relative velocities. The orientation of the
velocity peaks relative to the radar does not change if the feature is observed from different angles. Therefore, when
divergence and vorticity are uniform within the core, as in these examples, the ratio of divergence to vorticity is a
function of the velocity peaks' orientation angle (*):

Divergence (23)= ten(*),
Vorticity

as is also true for the circular model (Section 2). This is a very useful quality, although the eccentricity must be known
to determine the absolute magnitudes of divergence and vorticity.

Figure 5a, presented again for convenience in Figure 18b, shows an example from Del City where the elliptical
mesocyclone core appears to be comprised of a combination of rotation and convergence. A velocity peak orientation
angle * of 310 indicates a divergence/vorticity ratio of -0.6. This relative magnitude of convergence in the flow is
consistent with a 0.5 km height

The model simulation (Figure 18a) compares well with the real-life example. The "zero line" of both, and the
orientation of the velocity peaks, are similar. The relative straightness of the velocity contours within the core region of
the Del City example would suggest that both convergence and vorticity are nearly uniform within the core. Velocity
contours of the "potential flow" region do not agree as well. For one thing, there appears to be a change in the potential
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stretch factor of 2 is shown.
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Figure 16. Examples of the Elliptical Mesocyclone Model for Pure Divergence. Within the core, the velocity field cor-
responds to uniform divergence. Outside the core, velocity tapers off according to a standard potential flow.
The viewpoint is that of a single-Doppler radar, located towards the bottom of the page. Contour levels are
as indicated in Figure 1. White circles indicate the precise locations of velocity maxima. Example shown is
for an ellipse of stretch factor (S) =2. Ellipse size, shape, and orientation relative to the radar are indicated
by the thick solid line. The straight line bisecting the ellipse is along the major axis. The examples, ab,c,
and d are for the same feature observed at a feature orientation angle (0 f ) of 90, 60, 30, and 0 °, respec-
tively.
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Vorticity Inside the Core. The viewpoint is that of a single-Doppler radar, located towards the bottom of the
page. Contour levels are as indicated in Figure 1. White circles indicate the precise location of velocity
maxima. Example shown is for an ellipse of stretch factor (S) = 2. Ellipse size, shape, and orientation rela-
tive to the radar are indicated by the thick solid line. The straight line bisecting the ellipse is along the ma-
jor axis. The examples, a,b,c, and d are for the same feature observed at a feature orientation angle (Of) of
90, 60, 30, and 00, respectively.
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flow from one side of the mesocyclone to the other, which is not included in the model. Velocities on the right side
(figure relative) of the Del City mesocyclone change at a rate greater than potential flow. The opposite is true of the left
side. Clearly, in the examples seen up to now, only the core region fits our simple model.

4.3 Non-Uniform Convergence

In previous sections, the investigation has addressed conditions where uniform vorticity ania divergence fields
exist in the mesocyclone core region. In this section, the condition of non-uniform fields is addressed. Non-uniform
convergence is likely to exist, for example, at low levels of a storm where the inflow is unidirectional. Natural variations
in inflow patterns are likely innumerable. It is helpful to examine cases where the vorticity and divergence fields are
known.

In the Brandes (1984) multiple-Doppler study,7 aspects of the flow of the Del City storm are revealed. Figure 19a
shows his analysis of the convergence term contributing to vorticity tendency at 1.3 km AGL and 1826 CST (here, north
is towards the top of the figure). Also shown is the vertical vorticity at the same height (Figure 19b). The dashed line in
each figure indicates the mesocyclone outline as defined by vorticity >_ 0.01/s. The thick solid line is the mesocyclone
outline determined through single-Doppler analysis. Both of these indicate an elliptical flow pattern. In this example of
the Del City mesocyclone, vorticity was non-uniform in the "core" region, peaking inside the core in a region southeast
of the geometric center.

A perspective of the inflow is obtained from the convergence term (Figure 19a), given by ( aux/dx + duy/ay)
(ouy/cx - c/)uxy). The convergence term of the vorticity tendency equation is not necessarily representative of the wind
field convergence. However, if vorticity is uniform the convergence term will indicate the distribution of divergence,
although not the magnitude. Figure 19b shows that vorticity is not uniform in the core. However, this may be the result
of a non-uniform inflow, since the vorticity peak is off-center from the mesocyclone ellipse. This contention will be
supported if the shape and magnitude of the convergence term seen in Figure 19 a and b can be simulated by including
rotation derived from the elliptical model that is centered at the ellipse geometric center and contains a constant
horizontal mass flux.

The convergence field was simulated by trial and error, with guidance from the horizontal wind vectors (Figure
19c), which indicate convergence on the mesocyclone's east side. The most satisfactory reproduction is achieved when
the maximum inflow is set at 4 = 500 and the minimum set at t = 1600, with the mesocyclone minor axis (4 = 0*)
oriented towards the NE. Furthermore, at 4 = 1600 the wind field is slightly divergent such that the peak velocity due to
divergence is 10 percent of the peak inflow value at • = 50°. Therefore, the incoming velocity normal to the ellipse
surface is approximated by the relationship:

Vd {160° < 4 < 50} -- a Va cos (I- 500111.15) / R{J). (24)

For other angles,

Vd {0°< 4 <50°} =aVacos (/2.61)/R[•},) (25)

Vd{ 160° -< 4 <500) = a Va cos ((4 + 500 )/2.61) / R{(). (26)

This relationship is applied from the mesocyclone geometric center, and velocity magnitudes vary linearly along any
particular radial •.
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Figure 19. Fields of the Convergence Term of the Vorticity Tendency Equation (a), Vertical Vorticity (b), and Low
Level Winds (c) Determined From Multiple-doppler Analysis of the Del City Storm at 1826 CST and 1.3
km AGL (adapted from Brandes,7). The convergence term has units of 10-6/s 2 . Vorticity units are 10-4/s. In
(c), horizontal wind vectors are shown with radar reflectivity superimposed, and the stippled area towards
the top of the figure indicates the region of subsequent tornado damage that began 14 minutes after this
time. The medium-thickness solid line reproduced in each figure is the 30 dBz reflectivity contour. The
dashed line in each is the objectively determined mesocyclone, corresponding to the 0.01/s vorticity con-
tour. The thick solid line surrounding this is the mesocyclone outline determined from subjective analysis
of the single-Doppler velocity field.

34



The simulated convergence-term field for the mesocyclone area of Figure 19a is shown in Figure 20. This
represents an ellipse of stretch factor (S) = 2.0 with the peak inflow and rotational velocities adjusted to approximate the
convergence term field of the multiple-Doppler analysis. As in Figure 19, the orientation of the field is presented to
correspond to its geographic orientation and not to the radar. Although the simulated field is not as detailed as the true
field, it is representative in magnitude and general appearance.

The corresponding divergence field is shown in Figure 21. Convergence in the core region is greatest on the
mesocyclone's eastern side, and there is slight divergence in the southwestern quadrant. One aspect that is not well
represented is the region of potential flow. This is especially apparent in the northeast quadrant where the flow is
divergent. No attempt is made here to improve the representation of the potential flow since the immediate results
concern only the flow inside the core.

One effect of a non-uniform convergence field in the core is an induced vorticity field, shown in Figure 22. The
resultant vorticity field from the combined fields of induced vorticity and vorticity of pure rotation is shown in Figure
23. In this simulation, vorticity is largest in the southeast quadrant of the mesocyclone core, in general agreement with
the multiple-Doppler derivation (Figure 19b). The simulation underestimates the peak in vorticity by 15 percent,
however.

Also represented in the simulation is the region of anticyclonic vorticity in the potential flow region to the
southwest of the mesocyclone core. Little significance is attached to this since the potential flow region is not modeled
well. It can be argued that the vorticity distribution in the potential flow region may be due, in part, to the inflow field,
since that is what is observed in the core. However, at higher elevations of the Del City storm at this same time, there is
evidence in the single-Doppler observations that a rear-flank downdraft is forming, characterized by an anticyclonic
velocity couplet (not shown). A developing rear-flank downdraft may also have contributed to the high value of
anticyclonic vorticity seen in the multiple Doppler analysis. There is no evidence in the multiple Doppler analysis to
support the region of anticyclonic vorticity indicated by the model to the northeast of the mesocyclone core.

The single-Doppler B-scan view of the multiple-Doppler analysis is shown in Figure 24 along with the model
simulation. This is a radar perspective from the west of the mesocyclone. The thick line in the model indicates primary
inflection points along the velocity contours and outlines the mesocyclone core, with a stretch factor of approximately
2.0. One distinctive character of this example is the shifting of the velocity peaks so that they lie at one end of the core
region, a result of the increased convergence and vorticity 'here. The model simulation is similar. All the major
components of the flow are represented, from the shifting of the velocity peak locations to the elongation of the contours
on the "right" side of the mesocyclone. The one characteristic of the simulation that is not well represented is the
bending, or "S" shape, of the zero-line seen in the real-life example. The generally straight zero-line of the simulation is
a result of applying a linear variation of velocity in the core region along a given radial 4. It is possible to maintain a
constant horizontal mass flux for rotation with velocity varying other than linearly. The result would be that vorticity in
the core would not be uniform but a ring of maximum vorticity would exist somewhere within the core or could peak
near the mesocyclone center. This scenario would account for the S pattern seen in the real data and would explain why
vorticity was underestimated in the simulation. It also explains why the mesocyclone size by vorticity magnitude from
Brandes7 is significantly different from the single-Doppler estimation of the core (Figure 19b).

In summary, a directional and non-uniform inflow field was superimposed upon an otherwise uniform rotation field
that is described by a simple elliptical model. The non-uniform inflow produced non-uniform divergence in the
mesocyclone core region, and, more to the point, contributed to the vorticity field, making it non-uniform as well.

5. DISCUSSION AND CONCLUSIONS

To the author's knowledge, all single-Doppler work of mesocyclones to date has been based on the assumption that
the mesocyclone can be approximated by a circular flow. This work details an improvement on that model that accounts
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convergence term of vorticity tendency
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Figure 20. A Simulation of the Convergence Term of the Vorticity Tendency Equation for the 1826 Del City Example

of Figure 19a. The mesocyclone orientation in this case (-60o) corresponds to its geographic orientation, as

in Figure 19, and not to the orientation with regards to a radar.
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for the observed elongation of many mesocyclone flows. This new model does not negate the concept of a circular
mesocyclone, but is rather an extension of the original Rankine-Combined vortex flow.

Some examples of elongated mesocyclone flows observed with single-Doppler radar are presented. These are
closely simulated by a two-dimensional elliptical model that has a simple kinematics structure. The general model is one
in which vorticity and divergence are both uniform within the core, a quality associated with the conventional "circular"
mesocyclone model. One deviation from the circular mesocyclone model is a couplet of anticyclonic vorticity in the
potential flow region of a cyclonically rotating elliptical mesocyclone. The intensity of the anticyclonic couplet
increases with increasing elongation of the ellipse.

An important caveat of elliptical flows is that the detected rotational shear varies as a function of the ellipse
orientation to the radar. The ratio of the maximum to minimum rotational shear within the ellipse varies according to
twice the ellipse stretch factor. For the Del City example discussed herein, where the major axis is 1.8 times the minor
axis length, the detected radial shear would vary by 360 percent around the mesocyclone perimeter if the flow were
perfectly modeled by an ellipse. The problem is that the established criteria for mesocyclone detection assume that the
mesocyclone flow is approximately circular.11 Therefore, early detection of mesocyclonic shear, or detection of weak
mesocyclones at all, is very much dependent on viewing angle. Either the criteria for mesocyclone detection need to be
modified, or methods to infer peak shear in elliptical flows need to be developed.

Excess rotational kinetic energy suffers from the same viewing angle problem as shear. Unless the eccentricity is
known, the ERKE may be underestimated or overestimated considerably: by a factor of 2 or more for even moderate
eccentricity with a stretch factor of 1.5. For a mid-level, elliptical mesocyclone, where the flow field consists solely of
rotation, the orientation angle where circular flow can be assumed with minimal error in estimating ERKE is about 45
degrees. For the Del City, Oklahoma storm examined, with an inflow from the SE and the mesocyclone major axis
oriented NNW to SSE, the best viewing angle to determine ERKE is with the storm generally east or west of the radar.
Clockwise (counterclockwise) of these directions ERKE would be overestimated (underestimated) if the flow were
approximated by a circle. It would be worthwhile to determine the general orientation of elliptical flows.

Rotational kinetic energy can be determined accurately regardless of ellipse viewing angle for an elliptical flow by
assuming the detected peak velocities belong to a circular flow. Unfortunately, RKE has not been found useful for
mesocyclone classification or for determining severe storm potential.

The model describes a two-dimensional flow in what is, in reality, a three-dimensional flcw field. It is easier to
apply constraints to the generally horizontal rotation field than to the divergence field, because with horizontal
divergence, mass continuity requires a direct translation to vertical motion. Constant horizontal mass flux for rotation
appears to be a valid and useful assumption for the interpretation of the mesocyclone. In examples presented herein, the
application of various divergence fields to a uniform vorticity field closely reproduces the observed single-Doppler flow
field. A good test of the concept of constant horizontal mass flux for rotation is provided by a multiple-Doppler analysis
of the Del City, Oklahoma mesocyclone by Brandes. 7 His analysis generated the actual vorticity and divergence fields,
which can be used as inputs to the model. With a constant vorticity in the core due to rotation, the non-uniform
divergence field from the multiple-Doppler analysis is applied. Interestingly, the inflow field accounts for the observed
irregularities of the vorticity field. The resulting single-Doppler simulation closely resembles the observed real-life
example. This increases confidence that the model is realistic.

The limited perspective offered by single-Doppler radar can make it difficult to interpret the mesocyclone flow. It
is possible to retrieve more accurate flow estimates by applying more realistic models. With the ultimate goal of
applying automatically such a model as presented here, much work needs to be done. Present mesocyclone detection
algorithms for NEXRAD do not account for elliptical flow in their estimations. The results presented herein show that
this shortcoming can have dire consequences in terms of mesocyclone detection and severe weather evaluation.
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